Hybridization kinetics and thermodynamics of molecular beacons.
نویسندگان
چکیده
Molecular beacons are increasingly being used in many applications involving nucleic acid detection and quantification. The stem-loop structure of molecular beacons provides a competing reaction for probe-target hybridization that serves to increase probe specificity, which is particularly useful when single-base discrimination is desired. To fully realize the potential of molecular beacons, it is necessary to optimize their structure. Here we report a systematic study of the thermodynamic and kinetic parameters that describe the molecular beacon structure-function relationship. Both probe and stem lengths are shown to have a significant impact on the binding specificity and hybridization kinetic rates of molecular beacons. Specifically, molecular beacons with longer stem lengths have an improved ability to discriminate between targets over a broader range of temperatures. However, this is accompanied by a decrease in the rate of molecular beacon-target hybridization. Molecular beacons with longer probe lengths tend to have lower dissociation constants, increased kinetic rate constants, and decreased specificity. Molecular beacons with very short stems have a lower signal-to-background ratio than molecular beacons with longer stems. These features have significant implications for the design of molecular beacons for various applications.
منابع مشابه
Reversible molecular switching of molecular beacon: controlling DNA hybridization kinetics and thermodynamics using mercury(ii) ions.
We report that the hydrogen-bonding pattern in a molecular beacon can be replaced by metal-dependent pairs of Hg(2+) and DNA thymine (T) bases. A molecular beacon based on T-Hg(2+)-T exhibits a lower background signal and higher thermostability than regular molecular beacons.
متن کاملEvaluation of microfluidic biosensor development using microscopic analysis of molecular beacon hybridization kinetics.
Molecular beacons, oligonucleotide probes that fluoresce upon hybridization to a target nucleic acid, can be used in microfluidic devices to detect and quantify nucleic acids in solution as well as inside bacterial cells. Three essential steps towards the development of such devices as integrated microfluidic biosensors using molecular beacons were investigated in the present study. First, expe...
متن کاملUse of DNA and peptide nucleic acid molecular beacons for detection and quantification of rRNA in solution and in whole cells.
DNA and peptide nucleic acid (PNA) molecular beacons were successfully used to detect rRNA in solution. In addition, PNA molecular beacon hybridizations were found to be useful for the quantification of rRNA: hybridization signals increased in a linear fashion with the 16S rRNA concentrations used in this experiment (between 0.39 and 25 nM) in the presence of 50 nM PNA MB. DNA and PNA molecular...
متن کاملSynthesis and investigation of deoxyribonucleic acid/locked nucleic acid chimeric molecular beacons
To take full advantage of locked nucleic acid (LNA) based molecular beacons (LNA-MBs) for a variety of applications including analysis of complex samples and intracellular monitoring, we have systematically synthesized a series of DNA/LNA chimeric MBs and studied the effect of DNA/LNA ratio in MBs on their thermodynamics, hybridization kinetics, protein binding affinity and enzymatic resistance...
متن کاملReal-time monitoring of rolling-circle amplification using a modified molecular beacon design.
We describe a method to monitor rolling-circle replication of circular oligonucleotides in dual-color and in real-time using molecular beacons. The method can be used to study the kinetics of the polymerization reaction and to amplify and quantify circularized oligonucleotide probes in a rolling-circle amplification (RCA) reaction. Modified molecular beacons were made of 2'-O-Me-RNA to prevent ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic acids research
دوره 31 4 شماره
صفحات -
تاریخ انتشار 2003